
Time dependence and intrinsic irreversibility of the Pietenpol model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 6033

(http://iopscience.iop.org/0305-4470/26/21/040)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 6033-6038. Printed in the UK 

Time dependence and intrinsic irreversibility of the Pietenpol 
model 

I Antoniout, J Levitants and L P Horwitz$ll 
t Service de C h i d e  Physique. Universil.6 Libre de Bmxelles, 8 231, Campus Plaine ULB, 
B-1050, B N X ~ ~ S  
t lnstitule for Advanced Study. School of Natural Sciences, Princeton, NI 08540, USA 

Received 25 September 1992, in final form 16 August 1993 

Abstraci We shldy a model for an unstable system for which the u n p e m k d  Hamiltonian 
has a possibly inh i te  sequence of discrete states embedded in a wntinuous s p w m  on 
(--co,oo). The penurbation has m h i x  elements only between a non-degenerate continuum 
and the eigenfunctions asswiated with the discrete spectrum. This idealization of the Stark 
effect has the soluble suucnue of the Friedrick model. We show that the time dependence 
of the decay is a sum of exponential caotributions plus a background contribution that may be ,  
arbitrarily small for any positive 1. We discuss the structure of the generalized eigenstata in 
the Gel'fand biple associared with the resonances. 

We study a system for which the unperturbed Hamiltonian has an absolutely continuous 
non-degenerate spectrum in (-CO, 00) and a possibly infinite number of discrete states 
embedded in the continuum with eigenvalues mr and eigenstates & The perturbation is 
defined by (we use I f )  for normalized states of the Hilbert space, and IA), for example, for 
generalized states or, equivalently, specnal representation) 

where N may be infinite. The form factors are taken to be continuous and such that (for f 
in the domain of V) 

where 
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This generalization, which we shall call the Pietenpol model [l], of the Friedrichs model 
[2] to a continuous spectrum in (-CO, CO) is an idealization of the Stark system, where the 
potential of the unperturbed problem generates N bound states, and the perturbing potential 
is of rank N. In the case N = 00, one may model a local potential. The result is a system 
of (lower half plane) complex poles of the resolvent and a total Hamiltonian with no real 
bound states. We show that for the N-Pietenpol system, for sufficient analyticity of the 
functions gk(h) (and, for this study, the assumption of simple poles for the resolvent in its 
extension to the lower half plane), the time dependence of the decay law is that of a sum 
of exponential decay terms for any t > 0 to accuracy 0(e-ld), where d is bounded by the 
domain of analyticity of & ( A )  in the lower half plane. For the corresponding model with 
semibounded continuous spectrum [2], exponential decay cannot be achieved for t -+ CO 

PI. 
Let us consider the amplitude 

where 

for t > 0 and z in the upper half plane; the contour C runs from CO to -00 above the real 
axis. Then, 

is the probability that the initial state j remains among the states of the discrete subspace, 
and 1 - p j ( t )  is the probability that this initial state decays to the continuum. With the form 
(1) for the potential, the second resolvent equation 

1 1 1 1 +-v- 
2 - H  Z-Ho Z-Ho Z - H  
-=- 

implies the relations 

and 

Substituting (10) into (9). we find the relation 

C h i k ( z ) R k j ( z )  = &j 
k 

where 
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The determinant of hij(z) can have no zeros in the upper half plane, since Rij(z) is 
analytic. The proof is direct in the rank one case (hi j (z)  4 h(z) )  for which 

In the limit z + x = io, 

so that there is no zero on the real axis as well. In the general case, on the real axis, for 
z + x + io, 

m 

hij(x) = (x  - mi)&j - P s_, dhgi(*)*gj(h) x - h  + ingi(x)’gj(x). (15) 

For Ix -mil = 0(1), i.e. not O(g2), &(A) = O(g), we have, to O(&. for finite N, 

and there are, therefore, no zeros in the regions (x  -mi )  not O(gz) on the real axis as well. 
If x =mi .  + o(g2) for some i = i*, 

We therefore conclude, as for the usual Stark effect [41, that there are no discrete eigenvalues 
on the real axis (finite N). 

Let us now analytically continue h,(z) in the following way. We assume that the set 
of functions 

WijG)  g;(h)gj(h) (18) 

is the boundary value on the real axis of a set of functions analytic in some domain Sw in 
the lower half plane. Then, 

has the value hij(x) given in (15) in the limit z -+ x -io. Hence there is a unique function 

which is analytic in the whole region uhp Ed S,, and is the analytic continuation of hij(z) 
in Sw. If IZ - mi.1 = O(gz), for finite N, 

The imaginary part of the expression in brackets is 
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which can clearly vanish for Im z < 0. We may estimate the value of the root by recognizing, 
in (22). an approximation to the dishibution 

E 
lim - = - X S ( X )  

c-ro- x z  + €2 

where Imz corresponds to E .  The integral then has the approximate value 
-zlgi.(Rez)lz/Imz; since Rez = mi. +O(gz), we may also approximate Wi.i.(z) by 
its real value from (18); the vanishing of the imaginary part of (22) then implies that, to 
order gz, 

~ m z  N -r[gi.(mi.)12 (24) 

at the position of the zero. The corresponding real part of the root of the expression in 
curly brackets in (21) is found from 

For Imz small, one can neglect Im Wpi.(x + i h z ) ;  the thud term is approximately a 
principal part. 

Let us consider the generalized eigenvalue problem 151 

Hf(z) = zf(z). (26) 

From the structure of the model (I), it follows that 

mA$,lf(z)) +/- $(A)(~If(z))dA = Z ( $ i l f ( Z ) )  
-m 

and 

defined for z in the upper half plane (as in our beatment of the resolvent). We obtain the 
eigenvalue equation 

Chij(z)($jtf(z)) =o. (29) 

We see from this expression that, as we have shown above, there is no solution in the upper 
half plane or on the real axis; the analytic continuation of the relation (for ,y E D, a subset 
of the Hilbert space for which x(A) = (AJx)  is the boundary value of a function analytic 
in a domain of the lower half plane which contains the zeros of the determinant of the 
continuation of hjj(z))  151, 

j 

(x. Hf(z)) = z(x9 f(z)) (30) 

to the pole positions, however, has solutions. On these points (the complex pole solutions of 
(24),(25)), f (z)  must be chosen so that the analytic continuation of the vectors ((@j\f(z))) 
are eigenfunctions with zero eigenvalue of the analytically continued matrix hil(z). 
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We now investigate the existence of wave operators for the generalized Pietenpol system. 
Let us consider @k', the set of elements in the Hilbelt space orthogonal to the eigenvectors 
of Ho. For a set of x dense in &', the existence of the wave operators requires 

(31) 11 ve-iHOtx 11 -+ o 
for t -+ &CO. Now, since x has no component in @k, 

For the set { x )  such that (i lx) are continuous and dense in $kL, it follows fTom the 
Riemann-Lebesgue lemma that each term of the sum in (32) vanishes for t -+ M. Since 
the sum exists for t = 0 and x in the domain of V,  and each (positive) term decreases with 
t for t sufficiently large, (31) is valid for any finite N .  For N --f CO, however, the sum 
(31) may diverge for finite t if V is unbounded, and hence the wave operator may not exist. 
This can happen if the corresponding infinite rank potential approximates a local potential 
which is sufficiently singular or has  sufficiently slow decrease at infinity. 

Retum'ng to the integral (5). we see that we may deform the path of integration C to 
the lower half plane, obtaining the residual contributions of the poles of the mahix Rij(z) 
successively. Since, for IzI -+ w , h i j ( z )  + (z - m&j, Rij(z) - O ( l / z ) .  The integrals 
along the edges of the rectangle formed by the deformation C + C', a Line from right 
to left in the lower half plane, therefore do not contribute. The contour C' can be moved 
below as many of the poles as the domain of analyticity of Wij(z) permitst. In fact, the 
contour C' need not be a horizontal line, but is only required to enclose the poles from 
below. To bound the contribution of the integral along this line, however, we may choose 
sufficient analyticity of Wij(z) to admit a contour of constant imaginary part. In this way, 
for N finite, we may choose a contour for which the time evolution (5) is displayed as a 
sum over pole contributions (exact exponential decay) plus a non-exponential 'background' 
which, for any t > 0, is bounded as 0(ecrd), where d is determined by the domain of 
analyticity of Wij(z). For f = 0, this background term cannot be neglected, since (if H is 
defined on $) 

i.e. exact exponential behaviour is not valid at t = 0. 
For N -+ 00, unless the imaginruy part of the sequence of poles is bounded, the 

background term corresponding to the C' integration in the finite lower half plane will cany 
some exponential contributions; these can be made explicit by lowering the contour. These 
contributions are, however, bounded by O(e-'d) for t > 0 if lVjj(<) has sufficient domain 
of analyticity and Wjj(<)/(z  - {) is integrable along Im < = -d.  

In constructing a model of Stark-like phenomena, we note that for a potential 
(without Stark field) producing a discrete spectrum with ionization bound, one expects the 
corresponding pole positions to move further from the real axis (less stable) as the ionization 
point is approached. In this case, there would be no condensation of the imaginary parts 

t This technique may be used whether or not V is Vace class. It therefore extends the known facts about uace class 
operators. The t-dependence is well defined even if it is not uace class, which may be helpful in the discussion 
of the Stark effect in cases for which the wave opentors do not exist. 
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even if the unperturbed levels condense on the real line. The approximation (24) (in fact 
valid only for small imaginary part) would imply that the gi increase. If this implication is 
realized, the wave operator may not exist in the usual sense. 

We finally remark that if a Hamiltonian system with continuous spectrum in ( 0 , ~ )  is 
embedded in a Liouville space (for which the states are the Hilbert-Schmidt operators on 
the original Hilbert space), one finds a model of the type we have considered (the discrete 
spectrum of Ha is mapped onto a discrete difference spectrum, and the continuum on ( 0 , ~ )  
to a continuum on (-CO, CO)), as will be discussed in a future work. It is still hue that the 
background term must contribute at t = 0, so that exact exponential dependence, although 
possibly a very good approximation for t > l/d. cannot be achieved for all t .  In the 
same way as for the models in the usual Hilbert space [5], exact exponential behaviour 
can be achieved by studying the time dependence of the generalized states of the rigged 
Liouville space. In this case, these states are not represented by factorizable Hilbert-Schmidt 
operators, but are defined as linear functionals under analytic continuation as elements in a 
suitable extension of the the Hilbert-Schmidt space [6]. 
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